A SHORT TOTAL SYNTHESIS OF (-1)-19-HYDROXYASPIDOFRACTININE

Dominique CARTIER, Dominique PATIGNY, Jean LÉVY

ERA/CNRS n°319, Faculté de Pharmacie, 51 rue Cognacq-Jay, 51096 REIMS CEDEX, FRANCE

 $\frac{\textit{Summary}}{\textit{and further reduced to the}}: 3,19-\textit{Dioxoaspidofractinine} \quad \frac{13}{\textit{title compound 6}}.$

The hexacyclic ring systems of the pleiocarpine-aspidofractinine alkaloids was first built up by Biemann 1 , through decarboxylative cyclization of minovincine $\underline{1}$ to 19-oxoaspidofractinine $\underline{3}$ via indolenine 2 (scheme 1).

The first total synthesis in this series is due to Ban^2 , who annelated his precursor $(\stackrel{+}{-})-4$ to yield $(\stackrel{+}{-})-5$, a compound epimeric with the alcohol <u>6</u> derived from ketone <u>3</u>. Attachment of the hydroxy group to the two-carbon bridge *cis* or *trans* to the 21-H is best diagnosed by the highly differential M.S. fragmentation of $5vs6^{2,3}$.

Our expeditious synthesis of $(\frac{1}{2})$ -6 (scheme 2) is based on Biemann's cyclization of $\underline{1}$ to $\underline{3}$, and on our previous synthesis of 1-dehydro 3-oxoaspidospermidine $\underline{12b}$ through the polyphosphoric acid (PPA) promoted decarboxylative cyclisation of the oxindolic ester(s) $\underline{11b}$. These premises designated the ketoöxindolic ester(s) 11a as a synthetic target.

SCHEME 2

Accordingly, the unstable, highly functionalized synthon $\underline{9}$ (v_{CO} 1700,1710,1740cm⁻¹; $\delta_{\text{ppm}}^{\text{TMS}}$, 9.72(s,1H), 3.66(s,6H), 2.20(s,3H)) was prepared through ozonolysis of the olefin $\underline{8}$ (Eb^O,5mmHg148-150°C; v_{CO} 1710,1740cm⁻¹; $\delta_{\text{ppm}}^{\text{TMS}}$, 5.12(m,1H), 3.75(s,6H), 2.08(s,3H), 1.75(d, J=1Hz,3H), 1.5(d,J=1Hz,3H)), resulting from the Michael addition (benzene/Triton-B(cat.)/ K_2CO_3 ,1eq., reflux 20 hours; Y=26% of methyl acrylate on 2-oxo 5-methyl hex-3-ene $\underline{7}$. Upon reaction with 2-hydroxytryptamine $\underline{10}$, (equimol., toluene/reflux, Dean-Stark, 2hrs, then AcOH/reflux, 5hrs) $\underline{9}$ gave a mixture of stereoisomeric oxindoles $\underline{11a}$ (40%), of which only three components were distinguishable on t.l.c. The major, more polar oxindole (33,5% from $\underline{10}$ M+·,384; v_{CO} ,1690,1710,1720,1740cm⁻¹; $\lambda_{\text{max}}^{\text{nm}}$ 215,255,285; $\delta_{\text{ppm}}^{\text{TMS}}$, 4.42(s,1H), 3.57(s,3H), 1.74(s,3H)), was heated in PPA (120°C,2hrs) to give 3,19-dioxo aspidofractinine $\underline{13}$ (SM,m/z(%) 308,M+·(100), 280(10), 265(50), 252(20), 237(20), 169(65), 154(95); v_{CO} 1705,1720cm⁻¹; $\lambda_{\text{max}}^{\text{nm}}$ 210,243,292) as the sole indolinic derivative (17,3%), along with unidentified polar

material. Heating the mixture of oxindoles $\underline{11a}$ in PPA and completion of the isolation through acidic treatment (MeOH/H $_2$ SO $_4$, reflux,3hrs) of the more polar material led to $\underline{13}$ in 8.7% yield from 10.

LiAlH₄ reduction of $\underline{13}$ (THF) afforded 19-hydroxyaspidofractinine (65%), the mass spectrum of which: 296, M⁺·(55), 278(15), $\underline{252(65)}$, 167(20), 158(30), 149(30), 140(25), $\underline{109(100)}$ clearly fitted with structure $\underline{6}$ and not $\underline{5}$ (see scheme 1). Comparison with an authentic sample prepared $\underline{1,7}$ from minovincine $\underline{1}$ showed identical IR,UV and mass spectra, and identical R_F's on t.l.c.

SCHEME 3

The PPA cyclisation of $\underline{11a}$ to $\underline{13}$ is depicted on scheme 3: The simplest pathway (a) involves cyclization (onto a 2-phosphorimidate?) to 3-oxominovincine $\underline{14}$, followed by hydrolysis, decarboxylation and cyclization to $\underline{15} \rightarrow \underline{13}$. Path (b) would imply cyclization of the methylketone to $\underline{16}$ (the configuration of which results from the previous synthesis of $\underline{12b}$ from $\underline{11b}$). Intermediates $\underline{18}$ and $\underline{19}$ would now account for the decarboxylation, and for the actual relative configuration of $\underline{13}$. However in each case, formation of the 2-16 bond in acidic medium awaits interpretation.

References and Notes

- 1) H.K. SCHNOES and K. BIEMANN, J. Am. Chem. Soc., 86, 5693 (1964).
 - N. LANGLOIS and R.Z. ANDRIAMIALISOA, *J.Org. Chem.*, <u>44</u>, 2468 (1979) performed a similar cyclization of minovincine with retention of the methoxycarbonyl group.
- T. OHNUMA, T. OISHI and Y. BAN, J. Chem. Soc., Chem. Comm., 301 (1973). Lateron, Y. BAN,
 Y. HONMA and T. OISHI, (Tetrahedron Lett., 1111 (1976)), synthesized (†)-aspidofractinine itself from 4.
- 3) C. DJERASSI, H. BUDZIKIEWICZ, R.J. OWELLEN, J.M. WILSON, W.G. KUMP, D.J. LE COUNT,

 A.R. BATTERSBY and H. SCHMID, Helv. Chim. Acta, 46, 742 (1963).
- 4) J.-Y. LARONZE, J. LARONZE-FONTAINE, J.LEVY and J. LE MEN, Tetrahedron Lett., 491 (1974)
- 5) The ozonolysis was stopped upon discolouration of Sudan III, after T. VEYSOGLU,

 L.A. MITSCHER and J.K. SWAYZE, Synthesis, 807 (1980). The yield was appr. 65% (NMR).
- 6) The major derivative (56%) was the monoalkylated product.
- 7) A. GUGGISBERG, A.A. GORMAN, B.W. BYCROFT and H. SCHMID, Helv.Chim.Acta, 52, 76 (1969)

 (Received in France 3 February 1982)